GRK  2062 "Molecular Principles of Synthetic Biology"
print


Breadcrumb Navigation


Content

Area C: Synthetic Systems

Research Area C focuses on the reconstruction of isolated biological parts and modules.

The ultimate goal is to gain sufficient insights into certain biological parts and processes that it becomes possible to study their (self-)organization in vitro.

ProjectPIsTopic
C1 Schwille Controlling protein pattern formation with light
C2 Frey Design principles and control of synthetic cell polarity systems
C3 Cordes Sensitive fluorescence monitoring of ATP turnover and small molecule transport

C1 Controlling protein pattern formation with light

 The specific expertise of our group is the botton-up reconstitution of the bacterial cell division machinery in vitro. The specific aim of this research project is the engineering of photoswitchable Min protein variants that allow control, and potentially, entrainment, of their self-organization in vitro. The proposed projects involve the design, construction, and detailed quantitative biophysical and biochemical characterization of the engineered proteins, with respect to their self-organization and pattern formation.

C2 Design principles and control of synthetic cell polarity systems

Protein patterns play a major role in establishing cell polarity, and guiding cell division processes. We will develop mathematical models and theoretical frameworks to understand the molecular principles of synthetic cellular pattern forming systems. This will allow to design synthetic minimal protein systems able to robustly create specific spatio-temporal patterns.

C3 Sensitive fluorescence monitoring of ATP turnover and small molecule transport

In vitro characterization of membrane transporter activity relies indirect approaches, e.g., detection of small molecules via coupled enzyme systems, bulk biochemical or cell-based procedures. In this project, we develop novel fluorecent assays that allow to monitor ATP hydrolysis and substrate transport using fluorescence methods.


Service